Direkt zum Inhalt | Direkt zur Navigation

Benutzerspezifische Werkzeuge

Sektionen

Literaturverzeichnis

next up previous contents
Next: Beispielausdruck Up: Theorie und Praxis der Previous: Perspektiven

Literaturverzeichnis

Aar89
E. H. L. Aarts. Simulated Annealing and Boltzmann machines. John Wiley & Sohns Ltd., 1989.

AD93
D. Abramson and H. Dang. School timetables: A case study using simulated annealing. In Applied Simulated Annealing, Lecture Notes in Economics and Mathematical Systems, chapter 5, pages 104-124. Springer-Verlag, 1993.

AG82
E.L. Allgover and K. Georg. Predictor-corrector and simplicial methods for approximating fixed points and zero points of nonlinear mappings. In A. Bachem, M. Grštschel, and B.Korte, editors, Mathematical Programming, The State of the Art, pages 15-57, Bonn, 1982.

AKK98
Sanjeev Arora, David Karger, and Marek Karpinski. Polynomial time approximation schemes for dense instances of NP-hard problems. In JcSS, 1998. noch nicht erschienen.

Ali95
F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim., 5(1):13-51, 1995.

Bat96
Roberto Battiti. Reactive search: Toward self-tuning heuristics. In V.J. Rayward-Smith, I.H. Osman, C.R. Reeves, and G.D. Smith, editors, Modern Heuristic Search Methods, chapter 4, pages 61-83. John Wiley and Sons Ltd., 1996.

Bau97
N. Baumont. Scheduling staff using mixed integer programming. Europ. J. Operat. Res., 98, 1997.

BF96
Piotr Berman and Toshiro Fujito. On approximation properties of the independent set problem for degree 3 graphs. In 37th IEEE FOCS, 1996.

BGH97
R.N. Bailey, K.M. Garner, and M.F. Hobbs. Using simulated annealing and genetic algorithms to solve staff scheduling problems. Asia-Pacific Journal of Operational Research, 14:27-43, 1997.

BHM96
A. Bachem, W. HochstŠttler, and M. Malich. The simulated trading heuristic for solving vehicle routing problems. Discrete Appl. Math., 65, 1996.

Bin92
Ken Binmore. Fun and games. D.C. Heath and Company, Lexington, 1992.

BJKW96
Edmund Burke, Kirk Jackson, Jeff Kingston, and Rupert Weare. Automated timetabling: The state of the art. http://www.asap.cs.nott.ac.uk, 1996.

BK98
Piotr Berman and Marek Karpinski. On some tighter inapproximability results, further improvements. Technical Report TR98-065, Electronic Colloquium on Computational Complexity (ECCC), 1998. http://www.eccc.uni-trier.de/eccc.

BKP97
Edmund K. Burke, J.H. Kingston, and P.A. Pepper. A standart data format for timetabling instances. In Proceedings of the second conference on practice and theory of automated timetabling (PATAT), pages 98-105, 1997.

Blu98
Norbert Blum. Theoretische Informatik. Oldenbourg Verlag, München,Wien, 1998.

BNW95
E. K. Burke, J. P. Newall, and R. F. Weare. A memetic algorithm for university exam timetabling. In 1st International Conference on the Practice and Theory of Automated Timetabling (ICPTAT'95, Napier University, Edinburgh, UK, 30th Aug - 1st Sept 1995), pages 496-503, 1995.

Bro95
A. E. Brouwer. Block designs. In M. Graham, L. Grötschel, and L. Lovasz, editors, Handbook of Combinatorics, volume 1, chapter 14, pages 693-746. Elsevier, 1995.

Car
M. Carter. Timetabling literature. ftp://ftp.cs.nott.ac.uk/ttp.

Cat98
Oliver Catoni. Solving scheduling problems by simulated annealing. SIAM J. Control Optim., 36(5):1539-1575, 1998.

CCKV96
Michele Conforti, Gerard Cornuejols, Ajai Kapoor, and Krisina Vusovic. Perfect matchings in balanced hypergraphs. Combinatorica, 16(3):325-329, 1996.

CdW89
N. Chahal and D. de Werra. An interactive system for constructing timetables on a PC. European Journal of Operational Research, 40:32-37, 1989.

CG97
William H. Cunningham and James F. Geelen. The optimal path-matching problem. Combinatorica, 17(3):315-337, 1997.

CK81
Vincent P. Crawford and Elsie Marie Knoer. Job mathcing with heterogeneous firms and workers. Econometrica, 49.2, March 1981.

CK93
T. B. Cooper and J. H. Kingston. The solution of real instances of the timetabling problem. The Computer Journal, 36:645-653, 1993.

CK95a
Tim B. Cooper and Jeffrey H. Kingston. The complexity of timetable construction problems. In Proceedings of the First International Conference on the Practice and Theory of Automated Timetabling (ICPTAT '95), pages 511-522, 1995.

CK95b
Tim B. Cooper and Jeffrey H. Kingston. A program for constructing high school timetables. In Proceedings of the First International Conference on the Practice and Theory of Automated Timetabling (ICPTAT '95), pages 132-143, 1995.

CL92
J. Csima and L.Lovasz. A matching algorithms for regular bipartite graphs. Discrete Applied Mathematics, 35:197-203, 1992.

CLR96
Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. MIT electrical engeneering and computer science series. MIT Press, 1996.

CO97
David Corne and John Ogden. Evolutionary optimisation of methodist preaching timetables. In Proceedings of the second conference on practice and theory of automated timetabling (PATAT), pages 321-323, 1997.

Cor97
David Corne. Tradeoffs and phase transitions in the interactions between exam splitting, clash, near clash, and room capacity constraints. In Proceedings of the second conference on practice and theory of automated timetabling (PATAT), pages 318-320, 1997.

Cos94
D. Costa. A tabu search algorithm for computing an operational timetable. European Journal of Operational Research, 76:98-110, 1994.

CR97
J.P. Caldeira and A.C. Rosa. School timetabling using genetic search. In Proceedings of the second conference on practice and theory of automated timetabling (PATAT), pages 115-122, 1997.

CR98
Alberto Caprara and Romeo Rizzi. Improving a family of approximation algorithms to edge color multigraphs. http://www.deis.unibo.it, 1998.

CT92
M. W. Carter and C. A. Tovey. When is the classroom assignment problem hard? Operations Research, 40:28-39, 1992. Supp. No. 1.

Cur88
Inmaculata Jacinta Curiel. Cooperative Games. PhD thesis, Katholieke Universiteit van Nijmegen, 1988.

Cur96
Inmaculata Jacinta Curiel. Cooperative game theory and applications. Curacao, 1996.

Die96
Reinhardt Diestel. Graphentheorie. Springer, Berlin,Heidelberg,New York et al., 1996.

Dou95
P. Douchet. Hypergraphs. In M. Graham, L. Grötschel, and L. Lovasz, editors, Handbook of Combinatorics, volume 1, chapter 7, pages 381-433. Elsevier, 1995.

Dow97
Kathryn A. Dowsland. Off-the-peg or made-to-measure? timetabling and scheduling with SA and TS. In Proceedings of the second conference on practice and theory of automated timetabling (PATAT), pages 7-26, 1997.

DS90
Gunter Dueck and Tobias Scheuer. Threshold accepting: A general purpose optimisating algorithm appearing superior to simulated annealing. J. comp. physics, 90:161-175, 1990.

dW71
D. de Werra. Construction of school timetables by flow methods. INFOR, 9:12-22, 1971.

dW85
D. de Werra. An introduction to timetabling. European Journal of Operational Research, 19:151-162, 1985.

dW95
D. de Werra. Some combinatorial models for course scheduling. In Proceedings of the First International Conference on the Practice and Theory of Automated Timetabling (ICPTAT '95), pages 1-20, 1995.

dW96
D. de Werra. Extensions of coloring modells for scheduling purposes. Europ. J. Operat. Res., 1996.

dW97
D. de Werra. Restricted coloring models for timetabling. Discrete Math., 165/166:161-170, 1997.

dWE96
D. de Werra and J. Eschler. Open shop sheduling with some additional constraints. Graphs and Combinatorics, 1996.

dWM95
D. de Werra and N. V. R. Mahadev. Preassignment requirements in chromatic scheduling. ORWP 95/02, EPFL, 1995. Submitted for publication.

dWMP93
D. de Werra, N. V. R. Mahadev, and U. N. Peled. Edge chromatic scheduling with simultaneity constraints. SIAM Journal on Discrete Mathematics, 6:631-641, 1993.

ECF97
Saleh Elmohamed, Paul Coddington, and Geoffrey Fox. A comparision of annealing techniques for academic course scheduling. In Proceedings of the second conference on practice and theory of automated timetabling (PATAT), pages 146-166, 1997.

EdHH98
A.E. Eiben, J.K. Van der Hauw, and J.I. Van Hemert. Graph coloring with adaptive evolutionary algorithms. J. Heuristics, 4:25-46, 1998.

EIS76
S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing, 5:691-703, 1976.

FMP96
Klaus Fischer, Jörg P. Müller, and Makus Pischel. Cooperative transportation scheduling: an application domain for DAI. Technical report, DFKI GmbH Saarbrücken, 1996.

Gal84
David Gale. Equilibrium in discrete exchange economy with money. Int. J. Game Theory, 13(1):61-64, 1984.

GLS88
M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization, chapter 9. Springer, Berlin, 1988.

Got63
C. C. Gotlieb. The construction of class-teacher time-tables. In Proc. IFIP Congress Munchen 1962, pages 73-77, 1963.

GPS92
Lars Gislen, Carsten Peterson, and Bo Soderbarg. Complex scheduling with potts neural networks. Neural Computation, 4:805-831, 1992.

GPU98
GPUntis98, 1998. Messevorführung auf der C'Bit 98 Hannover.

Hal93
Magnús M. Halldórsson. A still better performance guarantee for approximate graph coloring. Information processing Letters, 45:19-23, 1993.

Has96
Johan Hastad. Clique is hard to approximate within tex2html_wrap_inline7535 . In 37th IEEE FOCS, 1996.

Hax95
P.E. Haxel. A condition for matchability in hypergraphs. Graphs and Combinatorics, 1995.

Hef97
A. Hefner. A min-max theorem for a constraint matching problem. Siam. J. Discrete Math., 10, 1997.

Her92
A. Hertz. Finding a feasible course schedule using tabu search. Discrete Applied Mathematics, 35:225-270, 1992.

HH93
R. Häggkvist and T. Hellgren. Extensions of edge-colourings in hypergraphs I. In Combinatorics, Paul Erdos is Eighty, volume 1 of Mathematical Studies, pages 215-238. Bolai Society, Keszthely (Hungary), 1993.

HHW96
Tad Hogg, Bernardo A. Huberman, and Colin P. Williams. Phase transitions and the search problem. Artificial Intelligence, 81:1-15, 1996.

Hil81
A. J. W. Hilton. School timetables. Annals of Discrete Mathematics, 11:177-188, 1981.

HK76
W. Hildenbrand and A.P. Kirman. Introduction to Equilibrium Analysis. Elsevier, Amsterdam, 1976.

Hoc97
Dorit Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS Publishing Company, Boston, 1997.

Huc
A. Huck. Mathematische Methoden des Operations-Research III. Vorlesung, gehalten am Institut für Diskrete Mathematik WS 96/97.

Jan97
Klaus Jansen. The optimum cost chromatic partition problem. In LNCS 1203. Springer, 1997.

JT95
Tommy R. Jensen and Bjarne Toft. Graph Coloring Problems. John Wiley & Sons, New York, 1995.

Jun86
W. Junginger. Timetabling in germany - A survey. Interfaces, 16:66-74, 1986.

Jun90
Dieter Jungnickel. Graphen, Netzwerke und Algorithmen. BI-Wissenschaftsverlag, Mannheim, Wien, Zürich, 2 edition, 1990.

KMSV94
Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh Vazirani. On syntactic versus computational views of approximability. In Proccedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pages 819-830, 1994. http://www.stanford.edu/people/motwani.

Knu94
Donald E. Knuth. The sandwich theorem. The Electronic journal of Combinatorics, 1:#A1, 1994.

KS96
Sanjeev Khanna and Madhu Sudan. The optimisation complexity of constraint satisfaction problems. Technical Report TR96-028, Electronic Colloquium on Computational Complexity (ECCC), 1996. http://www.eccc.uni-trier.de/eccc.

Laj95
Gyuri Lajos. Complete university modular timetabling using constraint logic programming. In Proceedings of the First International Conference on the Practice and Theory of Automated Timetabling (ICPTAT '95), pages 364-375, 1995.

Lec87
M. Leclerc. Algorithmen für kombinatorische Optimierungsprobleme mit Partitionsbeschränkungen. PhD thesis, Universität Köln, 1987.

Lew61
C. F. Lewis. The School Time Table. Cambridge University Press, 1961.

Lio66
J. Lions. Matrix reduction using the hungarian method for the generation of school timetables. Communications of the ACM, 9:349-354, 1966.

LS95
R. Lindermeier and F. Siebert. Softwareprüfung und Qualitätssicherung. Oldenbourg Verlag, 1995.

LY94
Carsten Lund and Mihalis Yannakakis. On the hardness of approximation minimization problems. J. ACM, 41(5):960-981, 1994.

Mar98
Michael Marte. Constraint-based grammar school timetabling: A case study, 1998. Diplomarbeit Institut für Informatik TU München.

Mic92
Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Artificial Intelligence. Springer, 1992.

Mim98
1998. http://www.solnet.net/ mimosa.

Miy98
Mitsunobu Miyake. On the incentive properties of multi-item auctions. Int. J. Game Theory, 27:1-19, 1998.

MK98
H.H. Millar and M. Kiragu. Cyclic and non-cyclic scheduling of 12h shift nurses by network programming. European Journal of operational research, 104(1998), 1998.

MM96
Helmut E. Mausser and Michael J. Magazine. Comparision of neural and heuristic methods for a timetabling problem. Europ. J. Operat. Res., 93:271-287, 1996.

MR97
Nuno Mamede and Tiago Rente. Repairing university timetables using genetic algorithms and simulated annealing. In Proceedings of the second conference on practice and theory of automated timetabling (PATAT), pages 187-204, 1997.

MR98
Andrew J. Mason and David M. Ryan. Integrated simulation, heuristic and optimistation approaches to staff scheduling. Op. Res., 46.2:161-175, 1998.

PHB99
Jan Puzicha, Thomas Hofmann, and Joachim M. Buhmann. Deterministic annealing: Fast physical heuristics for real-time optimisation of large systems. In Proceedings of the 15th IMACS World Conference on Scientific Computation Modelling and Applied Mathematics, 1999? noch nicht erschienen.

PS89
Nicholas Pippenger and Joel Spencer. Asymptotic behaviour of the chromatic index for hypergraphs. J. Combinatorial Theory, A 51:24-42, 1989.

Pul95
W.R. Pulleyblank. Matchings and extensions. In M. Graham, L. Grötschel, and L. Lovasz, editors, Handbook of Combinatorics, volume 1, chapter 3, pages 179-233. Elsevier, 1995.

Rei90
Karl Rüdiger Reischuk. Einführung in die Komplexitätstheorie. Teubner, Stuttgart, 1990.

RF88
D.M. Ryan and J.C. Falkner. On the integer properties of scheduling set partitioning models. Europ. J. Operat. Res., 35:442-456, 1988.

RHC97
Peter Ross, Emma Hart, and Dave Corne. Some observations about GA-based exam timetabling. In Proceedings of the second conference on practice and theory of automated timetabling (PATAT), pages 55-71, 1997.

Rom82
Bernardo Prida Romero. Examination scheduling in a large egineering school: a computer assisted participative procedure. Interfaces, 12(2):12-24, 1982.

RW97
Vevek Ram and Peter Warren. Automated timetable generation through distributed negotiation. In Proceedings of the second conference on practice and theory of automated timetabling (PATAT), pages 345-346, 1997.

SAW98
K. Steinhöfel, A. Abrecht, and C.K. Wong. On various cooling schedules for simulated annealing applied to the job shop problem. In Michael Luby, Jose Rolim, and Maria Serna, editors, Randomization and Approximation techniques in Computer Science, page 260ff. Springer, 1998. LNCS 1518.

Sch94
Charles H. Schmauch. ISO 9000 for Software Developers. ASQC Quality Press, 1994.

Sch95
Andrea Schaerf. A survey of automated timetabling. Technical Report CS-R9569, Centrum vor Wiskunde en Informatica, 1995.

Sch96
A. Schaerf. Tabu search techniques for large high-school timetabling problems. CWI-Report CS-R9611, Centrum voor Wiskunde en Informatica, Amsterdam, 1996.

Sed92
Robert Sedgewick. Algorithmen. Addison-Wesley, Bonn,Reading, 1992.

Sli96
Tomaz Slivink. Short proof of galvins theorem on the list-chromatic index of a bipartite multigraph. Combinatorics, Probability and Computing, 5:91-94, 1996.

SM97
Pedro Suares and Nuno Mamede. Micro-opportunistic timetabling. In Proceedings of the second conference on practice and theory of automated timetabling (PATAT), 1997.

SS66
L.S. Shapley and M. Shubik. Quasi-cores in a monetary economy with nonconvex preferences. Econometrica, 34(4):805ff, 1966.

SS78
L. A. Steen and J.A. Seebach. Counterexamples in Topology. Springer, New York, Heidelberg, 1978.

SS79
G. Schmidt and T. Strohlein. Timetable construction - an annotated bibliography. The Computer Journal, 23:307-316, 1979.

StŸ97
Matthias Stüber. Real world timetabling:a pragmatic view. In Proceedings of the second conference on practice and theory of automated timetabling (PATAT), pages 258-267, 1997.

Tuz97
Zsolt Tuza. Graph colorings with local constraints a survey. Discussiones Mathematicae Graph Theory, 17(2):161-228, 1997.

VB96
L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49-95, 1996.

Vyg
Jens Vygen. Approximationsalgorithmen. Vorlesung, gehalten am Institut für Diskrete Mathematik SS98. Skript; Heausgabe im Rahmen eines Buches angekündigt.

WK99
A. Wren and R. S. K. Kwan. Installing an urban transport scheduling system. J. of Scheduling, 2(1):3-19, 1999.

Wre95
Anthony Wren. Scheduling, timetabling and rostering - a special relationship? In Proceedings of the First International Conference on the Practice and Theory of Automated Timetabling (ICPTAT '95), pages 474-495, 1995.

WW98
J. Wood and D. Whitaker. Student centered school timetabling. Journal of the Operational Research Society, 49:1146-1152, 1998.

WZ97
George M. White and Junhan Zhang. Generating complete university timetables by combining tabu search with constraint logic. In Proceedings of the second conference on practice and theory of automated timetabling (PATAT), pages 268-277, 1997.

ZG81
W.I. Zangwill and C.B. Garcia. Equilibrium programming: The path following approach and dynamics. Mathematical Programming, 21:262-289, 1981.



(c) Martin Loehnertz 1999